Genralisation And Some Characteristics Of Tribonacci Sequence
 Salim. BADIDJA. Abdelmadjid BOUDAOUD

Abstract

The Fibonacci sequence is one of the most intriguing number sequences, and it continues to provide ample opportunities for professional and amateur mathematicians to make conjecture and to expend the mathematical horizon. The sequence is so important that an organization of mathematicians, the Fibonacci association, has been formed for the study of Fibonacci and related integer sequences. The association was founded in 1963 by Verner E.Hoggatt; jr (1912-1980) of San Jose state College (now San Jose state university), California, and Brother publishes The Fibonacci quarterly, devoted to articles related to integer sequences. A close look at the Fibonacci sequence reveals that it has a fascinating property: In the number of Fibonacci and Lucas numbers, every element, expect for the first two, can be obtained by adding its two immediate predecessors. Now, suppose we are given three initial condition and add the three immediate predecessors to compute their successor in a number sequence. Such a sequence is the tribonacci sequence, originally studied in 1963 by M. Feinberg when he was a 14 -year-old ninth grader at Susquehanna Township Junior High School in Pennsylvania (1963a).

Index Terms- Linear recurrent sequence; decomposition of unlimited terms; tribonacci.

2015 Mathematics Subject Classification: 22B14, 33S25, 44B36, 55S46.

1 INTRODUCTION

This work falls within the framework of number theory. We took as model the number of Fibonacci which are:
linear recurrent relation

With initial conditions

Similarly we worked to find the generalized of denoted by where which is

We talked about some their characteristics, especially from generalized Fibonacci sequence

With initial conditions

And the link between

$$
F_{n} \text { and } G_{n} \ldots
$$

Our contribution as the same plan, we relied on a new numbers

$$
\text { , , , , , , , , ' of ' }{ }^{\prime}
$$

fined by by the linear recurrent relation

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \quad n \geq 3
$$

With initial conditions

$$
T_{1}=T_{2}=1, \quad T_{3}=2
$$

more than as it has been identified by the theorem that every integer is able to written on the sum of distinct tribonacci num-
bers, with the help of special cases of which are
(number of addition) and we were able to enrich this research by characteristics with promising prospects.

2 Fibonacci sequence and his generalized

 We begin this research by display the Fibonacci sequence $\left(F_{n}\right)$, Which will be a strong support of us in all our contribution in relation to the study some property of tribonacci sequence which we know a few about it by comparing with the previous sequence
2.1 Recursive definition of Fibonacci sequence The following recursive relation define the nth Fibonacci

The eleven terms of Fibonacci are: $1,1,2,3,5,8$, 13, 21, 34, 55, 89,...

2.2 Generalized Fibonacci numbers

We consider the sequence $\left\{G_{n}\right\}$, where $G_{1}=a, G_{2}=b$ and $G_{n}=G_{n-1}+G_{n-2}, \quad n \geq 3$. The first terms are : ,

$$
, 2 a+3 b, 3 a+5 b, \quad \text { is called the }
$$ generalized Fibonacci sequence (GFS).

We can remark that the coefficients of and in the various terms of this sequence. they follow an interesting pattern:
The coefficient of and are Fibonacci numbers. In fact, we can pinpoint these two Fibonacci coefficients as the following theorem [4].

2.2.1 Theorem [5]

Let G_{n} denote the nth term of the (GFS). Then :

$$
G_{n}=a F_{n-2}+b F_{n-1}
$$

Proof.

By the principal of mathematical induction. Since

$$
\text { , the statement is true when } n=3 \text {. }
$$

Let k an arbitrary integer ≥ 3. Assume that the statement is true for all integers , where $3 \leq i \leq k$. Then:

$$
\begin{aligned}
G_{k+1} & =G_{k}+G_{k-1} \\
& =\left(a F_{k-2}+b F_{k-1}\right)+\left(a F_{k-3}+b F_{k-2}\right) \\
& =a\left(F_{k-2}+F_{k-3}\right)+b\left(F_{k-1}+F_{k-2}\right) \\
& =a F_{k-1}+b F_{k}
\end{aligned}
$$

Thus, by the principle of mathematical induction (PMI) the formula holds for every integer
Notice that this theorem is in fact true for all
We study some properties in the following theorem.

2.2.2 Theorem

Let denote the nth term of the (GFS). Then :

$$
\sum_{i=1}^{n} G_{k+i}=G_{n+k+2}-G_{k+2}
$$

Proof
By precedent theorem

$$
\begin{aligned}
\sum_{i=1}^{n} G_{k+i} & =a \sum_{i=1}^{n} F_{k+i-2}+b \sum_{i=1}^{n} F_{k+i-1} \\
& =a\left(F_{n+k}-F_{k}\right)+b\left(F_{n+k+1}-F_{k+1}\right) \\
& =\left(a F_{n+k}+b F_{n+k+1}\right)-\left(a F_{k}+b F_{k+1}\right) \\
& =G_{n+k+2}-G_{k+2}
\end{aligned}
$$

3 Tribonacci sequence and his generalized

From here we begin our contributions in this research starting with the definition of tribonacci sequence passing to his generalized and characteristics, after we try to find the link between the tribonacci terms and the Fibonacci terms and generally between any integer

3.1Definition of tribonacci numbers

[5].
The tribonaci numbers T_{n} are defined by the recurrent linear relation

Where and

The first twenty tribonacci numbers are

3.2 Generalized tribonacci sequence (GTS)

To this end, consider the sequence , where
, and

The first twelve tribonacci numbers are:

This ensuing sequence is called the generalized tribonacci sequence (GTS).
Take a close look at the coefficients of and are tribonacci numbers, and the coefficient of is the sum of two tribonacci numbers. as the following theorem shows.

Let denote the th term of the GTS. Then $\mathrm{T}=\mathrm{Ta}+\mathrm{T}+\mathrm{T}$ $\mathrm{b}+\mathrm{Tc}, \% \mathrm{n} 5$.
Proof By the principal of mathematics induction (PMI) since

The statement is true when
Assume the given statement is true for all integer
, when

$$
\begin{aligned}
& \text { So } \\
& \begin{aligned}
a_{k+1} & =a_{k}+a_{k-1}+a_{k-2}+2 \\
& =\left(T_{k-1}+T_{k-3}-1\right)+\left(T_{k-2}+T_{k-4}-1\right)+ \\
\left(T_{k-3}\right. & \left.+T_{k-5}-1\right)+2 \\
& =\left(T_{k-1}+T_{k-2}+T_{k-3}\right)+\left(T_{k-3}+T_{k-4}+T_{k-5}\right)-1 \\
& =T_{k-1}+T_{k-3}-1 .
\end{aligned}
\end{aligned}
$$

Then:

$$
T_{n+1}^{\prime}=T_{n}^{\prime}+T_{n-1}^{\prime}+T_{n-2}^{\prime}
$$

$$
\begin{aligned}
& =T_{n-3} a+\left(T_{n-4}+T_{n-3}\right) b+ \\
& T_{n-2} c+T_{n-4} a+\left(T_{n-5}+T_{n-4}\right) b \\
& +T_{n-3} c+T_{n-5} a+\left(T_{n-6}+T_{n-5}\right) b \\
& +T_{n-4} c
\end{aligned}
$$

Thus by the strong version of mathematical induction, the formula holds for every
It follows by the theorem that:

$$
\begin{aligned}
& =\left(T_{n-3}+T_{n-4}+T_{n-5}\right) a+ \\
& \left(\left(T_{n-4}+T_{n-5}+T_{n-6}\right)+\left(T_{n-3}+T_{n-4}+T_{n-5}\right)\right) b+ \\
& \left(T_{n-2}+T_{n-3}+T_{n-4}\right) c
\end{aligned}
$$

Thus, by the principal of mathematics induction (PMI) the formula holds for every integer

3.3 Definition

In the next we explore formula for the number of addition
needed to compute recursively. For example, it takes two additions to compute ; that is

3.4 Theorem

Let denote the number of additions needed to compute recursively. Then

$$
a_{n}=T_{n-1}+T_{n-3}-1
$$

Where
Proof
Since , the formula works when

Now, assume it is true for all positive integers , when
Then:

The statement is true when
Let be an arbitrary integer . Assume the given statement is true for any integer , when

Then
By combining party to party and simplified we find

We have
Then

Then

Finally

4. Theorem (representation of integers)

Let $\left\{T_{n}: n \in\right\}$ the sequence of triibonacci defined by , $T_{3}=2$, and by recurrent relation
for any positive in-
teger can be written as the sum of distinct tribonacci numbers. Proof

Let an arbitrary positive integer, and | . Put |
| :---: |
| we have finished, because that |
| such that |

| . If |
| :---: | :---: |

Proof
, we have finished, because in this case
. Else we
choose such that , consequently. This process is finished because the sequence of positive integer
is croissant and so possibly we give for certain
positive integer , in that case we have
the form of sum of distinct tribonacci numbers.
Where fore can translate all characterestics of to similarly. Wherever we advanced in the study of this linear recurrent sequence we more control in the integers and whoever in the fascide applications like the cryptography and so on... More generalization can deal with it and recover meany results from it like our use of the sum of four terms before the term which we like calculate relief three and so on...

References

[1] Mourad Abouzaid, journal de théorie des nombres de Bourdeaux. Les nombres de Lucas et Lehmer sans diviseurs primitifs Tome 18, n2 (2006), p 299-213.
[2] Abdelmadjid Boudaoud, decomposition of terms of Lucas sequences, journal of logic \& analysic 1: 4 (2009), p 1-23.)
[3] Abdelmadjid Boudaoud, conjecture de dikson et classes particulières d'entiers, annales mathématiques Blaise p 13-103-109 2006
[4] Francine DINER, cours d'analyse non standard, université d'Oran 1983.
[5] Tomas KOSHY, Fibonacci and Lucas numbers with applications, Framinghamstate College, 2001.
[6] Jean-Marie de Koninck, Amel MERCIER, 1001 problèmes en théorie des nombres2004.
[7] Paulo RIBENBOIN, My numbers, My friends, Number theory, QA241.R467 2000.
[8] C.L.Stewar on the greatest prime factor in terms of linear recurrente sequenc e, journal of mathematics, volume 15 number2, spring 1985.

